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Abstract. We develop a model for ferromagnetic resonance in systems with competing uniaxial and cubic
anisotropies. This model applies to (i) magnetic materials with both uniaxial and cubic anisotropies, and (ii)
magnetic nanoparticles with effective core and surface anisotropies; We numerically compute the resonance
frequency as a function of the field and the resonance field as a function of the direction of the applied
field for an arbitrary ratio of cubic-to-uniaxial anisotropy. We also provide some approximate analytical
expressions in the case of weak cubic anisotropy. We propose a method that uses these expressions for
estimating the uniaxial and cubic anisotropy constants, and for determining the relative orientation of the
cubic anisotropy axes with respect to the crystal principle axes. This method is applicable to the analysis
of experimental data of resonance type measurements for which we give a worked example of an iron thin
film with mixed anisotropy.

PACS. 76.50.+g Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances – 75.75.+a Magnetic
properties of nanostructures – 75.10.Hk Classical spin models

1 Introduction

The dynamics of magnetic nanoparticles is an area of in-
tense theoretical and experimental investigation. From the
technological point of view, one of the reasons for such a
great interest partly stems from the growing demands on
the magnetic recording industry. However, small nanopar-
ticles, used for high density storage, become superparam-
agnetic even at low temperature because of the thermal in-
stability of their magnetisation. Controlling this effect, in
view of room temperature applications, requires an under-
standing of the magnetisation dynamics at the nanosecond
time scale, taking into account the various material prop-
erties. The magnetic properties of a fine nanoparticle, as
compared to the bulk material, are dramatically altered
due to its reduced size and to the boundary effects which
are induced by the modified atomic environment at its
surface. Consequently, the nanoparticle turns out to be a
many-body system whose magnetic state cannot, a priori,
be faithfully described by a macroscopic approach. On the
other hand, from the theoretical point of view, investigat-
ing the dynamic properties of a many-spin particle is a real
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challenge because one is faced with the inherent difficulties
related to the analysis of the energy potential. This anal-
ysis is unavoidable since it is a crucial step in the study
of ferromagnetic resonance (FMR) and the dynamic re-
versal of the particle’s magnetisation. Nevertheless, there
exist some regimes of the physical parameters where the
macro-spin approach may still be used if appropriately ex-
tended. For example, in references [1–3] it has been shown,
analytically as well as numerically, that when the surface
anisotropy constant is much smaller than the exchange
coupling, the surface anisotropy contribution to the parti-
cle’s energy is of 4th-order in the net magnetisation com-
ponents and 2nd-order in the surface anisotropy constant.
This means that the behaviour of a many-spin particle
with uniaxial anisotropy in the core and relatively weak
surface anisotropy (transverse or Néel) can be modelled by
that of a macro-spin system whose effective energy con-
tains an additional cubic-anisotropy term. On the other
hand, magnetocrystalline anisotropy of 4th-order natu-
rally arises in magnetic materials (e.g., iron and YIG) and
adds to the 2nd-order contribution, though with an order
of magnitude smaller [see Ref. [4]]. In iron magnetic mul-
tilayers and thin films we also observe a mixing of uniaxial
and cubic anisotropies which arise from their growth on
particular substrates, notably GaAs (001) [5].
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In reference [4] the effective macro-spin approach was
used to interpret the µ-SQUID measurements of the 3D
switching field (or Stoner-Wohlfarth astroid) for a cobalt
particle of 3 nm diameter (containing 1500 atoms). The
authors concluded that the cluster-matrix interface may
be responsible for the main contribution to the magnetic
anisotropy of the nanocluster. This gives a further indica-
tion that the macro-spin approach with an effective poten-
tial energy provides a more reasonable approximation to
the initial many-spin particle than the macro-spin Stoner-
Wohlfarth model. This may thus be used to investigate,
though in a phenomenological manner, the dynamics of
the particle, and in particular the FMR characteristics.

Accordingly, we first consider the general situation of
either (i) a single magnetic moment, regarded as a macro-
spin representation of a nanoparticle, with an effective po-
tential containing both a 2nd- and a 4th-order anisotropy
terms, including the applied magnetic field; or (ii) a mag-
netic material with competing magnetic anisotropies (uni-
axial and cubic). We compute the resonance field and fre-
quency as functions of the intensity of the cubic-anisotropy
contribution and the static magnetic field (with varying
direction and magnitude). In addition, we also consider
the possibility of having the cubic-anisotropy axes rotated
at some angle with respect to the axes of the crystal lat-
tice, while the uniaxial anisotropy easy axis is maintained
parallel to the z axis throughout.

This work is organised as follows: we first outline the
basic framework of the free energy and parametrise it into
dimensionless quantities which is convenient for the nu-
merical calculations. The free energy, containing a uniax-
ial and cubic anisotropy terms together with the Zeeman
contribution, is then used to evaluate the ferromagnetic
resonance conditions. We perform two types of calcula-
tion: (i) the resonance field as a function of the direction
of the applied field; and (ii) the full frequency spectrum
as a function of the applied field. In each case we have
varied the relative strengths of the anisotropy constants
to demonstrate how the resonance condition changes with
the growing influence of the cubic-anisotropy contribution.
After discussing the results for the general case, we con-
sider the specific case of a cobalt nanoparticle as a model
system, with the parameters of reference [4], to estimate
the range of the resonance frequency and field. We also es-
timate the anisotropy constants in an iron thin film with
both uniaxial and cubic anisotropies by fitting experimen-
tal data.

2 Energy and physical parameters

2.1 Basic expressions and notation

We define the system’s net magnetic moment as m =
µs s with µs = mvV , where mv is the magnetic moment
density, s (|s| = 1) is the unit vector in the direction of
m. The energy of m reads

E = −µsH (s · eh)−K2V (s ·n)2 +
K4V

2
(s4x′ + s4y′ + s4z′),

(1)

where n is the uniaxial anisotropy easy axis (K2 > 0)
and eh the unit vector along the applied field. In equa-
tion (1) we have used a different form for the cubic
anisotropy from that often found in the literature, i.e.,
−K4V

(
s2xs

2
y + s2ys

2
z + s2zs

2
x

)
, with K4 > 0. These forms

are related through the identity 1 =
(
s2x + s2y + s2z

)2 =
s4x+s4y+s4z +2

(
s2xs

2
y + s2ys

2
z + s2zs

2
x

)
, where the first equal-

ity is due to |s| = 1. The (x′y′z′) coordinate system is
deduced from (xyz) by a rotation of ψ around the z axis,
i.e., sα′ =

∑
β=x,y,zR

αβ sβ, where Rαβ are the matrix
elements of the corresponding rotation.

The magnetic moment m experiences the effective field
defined by Heff ≡ − 1

µs
δE/δs and which is normalized with

respect to the second-order anisotropy field

H2 ≡ 2K2V

µs
, (2)

leading to the dimensionless field vector

heff = h eh + k2 (s · n)n − ζ
∑

α,β=x,y,z

s3β′Rβαeα, (3)

where
h ≡ H

H2
, ζ ≡ K4

K2
, (4)

and the parameter k2 = 0, 1 is inserted to allow us to
switch on or off the uniaxial anisotropy. Using these di-
mensionless quantities, the energy (1) becomes

E ≡ E

2K2V
= −h s · eh − k2

2
(s · n)2 +

ζ

4

∑

α=x,y,z

s4α′ . (5)

Using the parametrisation s(θ, ϕ) and eh(θh, ϕh) the (di-
mensionless) FMR equation reads (see e.g., Refs. [6,7] and
references therein)

ω2
s =

1
sin2 θ

[(
∂2

ϕE
) (
∂2

θE
) − (

∂2
θϕE

)2
]
, (6)

with the right-hand side being evaluated at the equilib-
rium state s0(θ0, ϕ0). We have also introduced the reduced
angular frequency

ωs ≡ ω
µs

2γK2V
= ωτs, (7)

with
τs ≡ µs

2γK2V
=

1
γH2

(8)

being the scaling time. So, the reduced frequency reads

νs ≡ ωs

2π
=
ωτs
2π

= ντs.

As mentioned in the introduction, the appearance of the
4th-order term in equation (5) may be of two origins: (i)
the natural magnetocrystalline cubic-anisotropy contribu-
tion that adds to the uniaxial anisotropy in real materi-
als [4,6,7]; or (ii) as has been shown in references [1–3],
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the contribution induced by the surface anisotropy in a
nanoparticle cut from a cubic lattice.

While the first situation is quite common in magnetic
materials, and in particular in thin films, the second case
deserves further explanation and a review of the recent
results on which the underlying assumption is based. This
is done in the following section

2.2 Effective energy of a nanoparticle

Investigating the dynamics of a nanoparticle taking ac-
count of its intrinsic properties, such as its size and shape,
crystal structure and surface anisotropy, would require
the use of an “atomistic” approach with the atomic mag-
netic moment as its building block. However, within this
approach one is faced with complex many-body aspects
with the inherent difficulties related with analysing the
energyscape (location of the minima, maxima, and sad-
dle points of the energy potential). This analysis is un-
avoidable since it is a crucial step in the calculation of
the relaxation time and thereby in the study of the mag-
netization stability against thermally-activated reversal.
In view of such difficulties, one may then ask the ques-
tion as to whether there exists an intermediate approach
with the relative simplicity of the macroscopic approach
and richness of the many-spin approach, namely a macro-
scopic model which captures some of the intrinsic fea-
tures of the magnetic nanoparticle. In references [1–3]
analytical as well as numerical calculations showed that
a many-spin particle, cut from a cubic lattice, when its
surface anisotropy is small with respect to the exchange
coupling, i.e., when its magnetic state is not far from the
collinear state, may indeed be modeled by an effective one-
spin problem (EOSP), i.e., a single macroscopic magnetic
moment m representing the net magnetic moment of the
many-spin particle. The energy of this EOSP (normalized
to JN , where J is the substance bulk exchange coupling
and N the total number of spins in the cluster) may be
written as

EEOSP = Ec + E(0)
1 + E(1)

2 + E(0)
2 , (9)

where (i) Ec is the pure core anisotropy contribution that
may be uniaxial, cubic, bi-axial, etc. (ii) E(0)

2 is the pure
surface contribution that stems from surface anisotropy; it
is quadratic in the single-site surface anisotropy constant
Ks and quartic in the components of m; it is also propor-
tional to a surface integral that depends on the size, shape,
and crystal structure of the initial many-spin particle [see
Eq. (10) below]; (iii) the contribution E(0)

1 is induced by
elongation (or shape anisotropy); this term is quadratic
in the components of m and linear in Ks; iv) E(1)

2 arises
from a competition between the surface anisotropy which
induces spin disorder that tends to propagate deep into
the particle, and the core anisotropy that tends to ex-
pel such spin-noncollinearities out to the particle’s border.
This core-surface mixing contribution is linear in the core
anisotropy constant Kc, quadaratic in Ks, and its depen-
dence on m is given by a function that mixes quadratic

and quartic anisotropies. However, the contribution E(1)
2

is only relevant if (Kc/J) � (Ks/J)2.
Collecting all contributions, a many-spin particle sat-

isfying the above-mentioned conditions, may be described
by a macroscopic magnetic moment m, representing the
net magnetic moment of the particle, whose (effective)
energy may be written as in equation (5) with k2, ζ be-
ing regarded as the effective uniaxial and cubic anisotropy
constants, respectively. It is then important to note that
the magnitude and sign of these constants depend on the
intrinsic properties of the initial many-spin particle, such
as the crystal structural, size and shape, and physical pa-
rameters such as the single-site surface anisotropy (in in-
tensity and model). However, we should emphasize that
these results hold for cubic crystal lattices and quadratic
surface anisotropy models, such as Néel’s or transverse.

For further reference, we note that in reference [1] an
analytical expression was given for the effective constant
Keff of the surface-induced cubic-anisotropy term E(0)

2 ,
when the core anisotropy is absent, that is

Keff = κ
K2

s

zJ
, (10)

where z is the coordination number and κ a surface inte-
gral that depends on the underlying lattice, shape, and
size of the particle and also on the surface-anisotropy
model. For a spherical particle (of ∼1500 spins) cut from
a simple cubic lattice and with Néel’s surface anisotropy,
κ � 0.53465.

Finally, we note that the shape anisotropy is included
in the uniaxial anisotropy contribution. We also assume
that in ellipsoidal particles the magneto-crystalline easy
axis is parallel to the direction of the major axis.

3 Results and discussion

Before we discuss our results, some remarks are in order
concerning the general numerical method used here. In or-
der to obtain, for instance, the resonance field from equa-
tion (6), for a given angular frequency ωs, one has to find
the equilibrium state of the system for a given set of the
physical parameters k2, ζ, h, θh, ϕh. However, as it is not
possible to obtain in general analytical expressions for the
equilibrium state, or the global minimum of the energy (5),
we resort to numerical approaches. Accordingly, since we
only need the absolute minimum, an adequate numerical
method is provided by the standard Metropolis algorithm
with random increments, which is a global method. Next,
once the global minimum has been found, we proceed with
a fine search by solving the Landau-Lifshitz equation with
weak damping using the Runge-Kutta method.

In Figure 1 we plot the resonance frequency as a func-
tion of the applied field for various values of ζ with the
cubic-anisotropy axes making an angle ψ = 0, π/4 with re-
spect to the (x, y, z) frame. We now discuss some features
common to both cases of ψ = 0 and π/4: (i) in the case
of zero field, using the FMR equation (6), or the effective
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Fig. 1. Resonance frequency as a function of the applied field for various values of ζ with the cubic-anisotropy axes making an
angle ψ = 0, π/4 with respect to the (x, y, z) frame.

field (3), with small ζ, the global minimum is predomi-
nantly determined by the uniaxial anisotropy, such that
ωs � k2 − ζ. This explains the decrease of ωs with ζ at
zero field, since the uniaxial- and cubic- anisotropy terms
contribute with opposite signs [see Eq. (3)]. Obviously,
this behaviour does not change when the cubic-anisotropy
axes are rotated by some angle around the z axis, as can
be seen in Figure 1 (right), due to the rotation symmetry
in the equator (xy plane) when h = 0; (ii) in strong fields,
θ0 ∼ θh, ϕ0 ∼ ϕh and we can expand the FMR equation
(6) in (ζ/h), assuming weak cubic anisotropy, to obtain
the asymptotic behaviour (dashed lines in Fig. 1 (left)).
This leads to

ωs � hr − h

2

(a
r

+ br
) ζ

h
, (11)

r =

√

1 − k2

h
, a = cos4 ψ + sin4 ψ, b = cos 4ψ.

The coefficient of the term in ζ/h is (r+1/r)/2 for ψ = 0
and (r − 1/2r)/2 for ψ = π/4. Hence, for ψ = π/4 the ef-
fect of the correction term in ζ/h is negligible. Indeed, as
can be seen in Figure 1 (right), the high-field asymptote
is almost independent of ζ and is approximately given by
the asymptote for the uniaxial anisotropy, i.e., by equa-
tion (11) with ζ = 0.

A point on the curves ωs(h) that is of special impor-
tance in practice, is that defined by (h = hc, ωs = 0) [see
discussion below]. In Figure 1 the critical field at which
ωs vanishes is given by

hc = k2 + ζ
[
cos4 ψ + sin4 ψ

]
. (12)

In particular, we have hc = k2 + ζ in Figure 1 (left) and
hc = k2 + ζ/2 in Figure 1 (right). This, together with
the analysis for h = 0 and the asymptote (11) for strong
fields, shows that the effect of the ψ rotation is to reduce
the influence of cubic anisotropy. In the case of pure cubic
anisotropy (k2 = 0) the curves of ωs versus h cross the

other curves with k2 �= 0, and for the sake of clarity were
not included in Figure 1. One should note that in fact
the critical field hc, at which ωs tends to zero, is the field
on the Stoner-Wohlfarth curve (or astroid) at which the
metastable minimum merges with the saddle point and
loses its local stability. Indeed, from equation (6) we see
that the condition ωs = 0 is just the definition of this
inflection point.

The above results can be used to interpret FMR
measurements with sweeping frequency as obtained, for
example, by the Network Analyser FMR (NA-FMR) tech-
nique [8], Brillouin Light Scattering (BLS) [9] and Pump-
Probe Microscopy (PPM) [10]. More precisely, one can
extract the anisotropy constants K2,K4, and also the ro-
tation angle ψ. For this, we can use the three indepen-
dent conditions provided by (i) ωs at zero field which is
k2 − ζ; (ii) the high-field asymptote (11); and (iii) the
critical point hc given by (12) at which ωs tends to zero.
Therefore, for a given material with given uniaxial and
cubic anisotropies, in which the cubic-anisotropy axes are
at some arbitrary azimuthal angle ψ with respect to the
crystal axes, we can uniquely determine the three pa-
rameters (K2,K4, ψ). It should be noted, however, that
these measurements must be made with the field applied
along one of the hard axes in order to obtain the three
above conditions. For any other orientation of the applied
field we lose condition (iii), because the cusp is no longer
well defined. In the general situation, where the uniaxial-
anisotropy axis is tilted at some angle with respect to
the z axis ([001] axis), the above three conditions should
be rederived.

Figure 2 shows plots of the resonance field versus the
direction of the applied field for various values of ζ and
for the cubic-anisotropy axes parallel and at ψ = π/4
with respect to the (x, y, z) frame. These plots are for the
fixed frequency ωs = 1.5, which corresponds to 13.5 GHz
in physical units. In effect, this corresponds to cutting a
horizontal line (at ω = 1.5) in the frequency-field curves
(Fig. 1). The curves with k2 = 0, ζ = 1 correspond to
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Fig. 2. Resonance field versus the direction of the applied field for various values of ζ. The field is applied in the xz plane. The
frequency is set to ωs = 1.5, which corresponds to 13.5 GHz. Also shown for comparison is the case of pure cubic anisotropy
(k2 = 0, ζ = 1). The cubic-anisotropy axes are at ψ = 0, π/4 with respect to the (x, y, z) frame. (The angle θh is measured in
radians.)

the case of pure cubic anisotropy and are included only
for comparative purposes. At θh = 0, we have hres � ω −
(k2 − ζ). In strong fields, we can compute the resonance
field, in principle, by replacing in equation (11) ωs by a
fixed frequency and solving for h. This should lead to an
approximate expression, albeit somewhat cumbersome, for
the resonance field at θh = π/2. For this orientation, we
see that the difference induced by the cubic anisotropy (ζ)
is suppressed by the ψ rotation. As for the frequency plots
(Fig. 1), comparing the results in Figure 2 we see that the
effect of the ψ rotation is again to reduce the influence of
cubic anisotropy. Angular FMR studies in thin films also
exhibit the angular variations indicated in Figure 2 [11].

By way of illustration and to give some orders of mag-
nitude of the various constants of the resonance frequency
and field, we first consider the example of a nanoparti-
cle, and in particular a (faceted) cubo-octahedral cobalt
particle (of 3 nm in diameter) as obtained experimen-
tally in reference [4]. In this reference, the 3D exper-
imental switching field was fit to equation (5) with
an additional (relatively weak) anisotropy term along
the hard-axis y. According to the estimations given
in [4], K2 � 2.2 × 105 J/m3 and K4 � 0.1 × 105 J/m3,
which in our case yields ζ = K4/K2 � 0.05. This im-
plies that the effective anisotropy of this nanoparti-
cle is mainly uniaxial. On the other hand, using equa-
tion (10) and the parameters given thereafter, we estimate
the surface anisotropy constant as Ks � 10−22 J/atom
(or 0.1 erg/cm2), for the above mentioned cobalt par-
ticle of about 1500 atoms. Similar values have been
quoted by several authors using Neutron (quasi)-Inelastic
Scattering [12] and FMR [13] on cobalt particles.
From equation (8), using µs � 1.4 × 106 A/m we obtain
τs � 1.8 × 10−11 s, and hence the angular frequency ωs =
1.0 (in Fig. 1) corresponds to ∼ 9 GHz, and hres = 1 (in
Fig. 2) to Hres = hresH2 � 0.3 T [see Eq. (2)].

Fig. 3. Comparison of experiment and theory for the resonance
frequency as a function of the applied field in a 40-monolayer
iron thin film, as given in reference [8].

At present there are no experimental frequency-field
data available on nanoparticle systems for comparison
with theory. However, future work is expected to address
this issue.

As a second illustration we show the fitting procedure
described above. For this we have used the frequency-field
data from reference [8] for a 40-monolayer iron film, ob-
tained by NA-FMR, which exhibit mixed uniaxial and cu-
bic anisotropies. This film is part of a bilayer system which
may have some weak coupling. While the coupling itself is
important in general, we have neglected its effect and only
used this data as an illustration of the fitting procedure.
The results are shown in Figure 3 where full circles rep-
resent the experimental data while the line corresponds
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to the high-field expansion of equation (11), which we ex-
press as

ωs � h+ a0 +
a1

h
+
a2

h2
,

a0 = −1
2

[
1 +

(
2 − 5

2
sin2(2ψ)

)
ζ

]
,

a1 = −1
8

[
1 + 3 sin2(2ψ)ζ

]
,

a2 = − 1
16

[
1 +

(
2 +

1
2

sin2(2ψ)
)
ζ

]
, (13)

after setting k2 = 1. This corresponds to the case with
mixed uniaxial and cubic anisotropies. The result of the
best fit yields H2 � −0.175T, ζ � 1.7, and ψ � 17◦.

It is seen that this approach leads to physically re-
alistic estimates of the anisotropy parameters. It is also
possible to consider the demagnetizing field contribution
separately from the uniaxial anisotropy, and its value can
be obtained experimentally as given in reference [8]. On
the other hand, the present approach is applicable only at
very low (or zero) temperature and as such overestimates
the anisotropy constants for these measurements which
were taken from experiments at room temperature. Ther-
mal effects on the resonance characteristics can be evalu-
ated from the calculation of the transverse ac susceptibil-
ity as shown in reference [14]. More generally, one also has
to investigate the thermally-activated reversal of the mag-
netization and compute the relaxation rate of a magnetic
moment with mixed uniaxial and cubic anisotropy and in
a magnetic field applied at an arbitrary angle with respect
to the uniaxial easy axis. This work is in progress [15].

On other hand, in the case of magnetic nanopar-
ticle assemblies, one has to take account of the effect
of inter-particle dipole-dipole interactions (DDI) on the
static and dynamic properties. In this context, and in
the macroscopic approach, in reference [16] the static be-
haviour of the magnetization, as a function of tempera-
ture and applied field, was investigated taking account of
anisotropy, DDI and also of the volume and anisotropy
axes distributions. In the case of weak DDI, practical ap-
proximate analytical expressions were obtained by pertur-
bation theory which provides a better approximation than
the mean-field approach used in reference [17] (see also
discussion in Ref. [18]). These expressions involve many
lattice tensors which account for the effect of the demag-
netizing field and thus describe the change of magnetiza-
tion in prolate and oblate particle systems. They also show
how the magnetization deviates from the Langevin law in
the presence of anisotropy and DDI. Next, in reference [19]
the effect of DDI on the dynamics of the assembly, and in
particular on the zero-field-cooled magnetization was in-
vestigated, and an explanation was given for the change
of behaviour of the maximum temperature as a function
of the applied field. It was shown that the transverse com-
ponent of the DDI field creates new saddle points in the
particle’s energy and thereby increases the switching rate.
In addition, the critical (or activation) volume that sep-
arates the superparamagnetic from blocked particles de-

creases upon increasing the particle concentration. It was
found that this volume separates the low-field regime dom-
inated by the blocked particles from the high-field regime
dominated by the superparamagnetic ones. As such, as
the concentration (or intensity of DDI) of the sample is
increased, the low-field regime shrinks and eventually dis-
appears.

In connection with the present work, the use of the
developments in references [16,19] is necessary in order
to study the interplay between the effect of DDI and the
intrinsic properties of nanoparticles modeled as an EOSP
with the energy in equation (5), and the ensuing effects
on the FMR characteristics.

4 Conclusion

We have studied the ferromagnetic resonance of an effec-
tive magnetic moment in the general situation of an energy
potential containing both uniaxial and cubic anisotropies.
In particular, we have computed the resonance frequency
and field as functions of the applied field magnitude and
direction. These results can be used in interpreting the
FMR measurements on magnetic materials which exhibit
both forms of anisotropy. We have provided a simple
method for estimating the anisotropy constants (uniaxial
and cubic) as well as evaluating the relative orientation of
the cubic-anisotropy axes with respect to crystalline axes.
However, this model assumes that the uniaxial anisotropy
axis is coincident with one of the crystalline axes. The
general case is currently being investigated and will be
published in a future work. The frequency-field curves,
as illustrated here, can be obtained experimentally us-
ing techniques such as NA-FMR, BLS, and PPM. On the
other hand, the present FMR analysis may also be used
to check whether this EOSP approach is a reasonable ap-
proximation to real magnetic systems and especially to
nanoparticles. However, it is not obvious how to quantita-
tively distinguish between the cubic anisotropy of magne-
tocrystalline origin and the one that is induced by the sur-
face contribution, since these two contributions turn out
to be of the same order of magnitude. Nevertheless, FMR
measurements on well separated nanoparticles of a very
small size and grown from a magnetic material of negligi-
ble cubic contribution could provide us with more precise
data for this purpose. One possible method would be to
study the FMR spectra as a function of the particle’s size.
Indeed, changing the size should alter the relative contri-
butions of surface and core anisotropies and thus indicate
the origin of each.

We have used the model presented here to fit the exper-
imental data from the high-field branch of the frequency-
field curve of NA-FMR measurements on an iron thin film.
We observe good agreement between theory and experi-
ment which illustrates the application of the model.

In a recent work [20] we have developed a general the-
ory for computing the whole spectrum of a many-spin par-
ticle, including core and surface anisotropy, exchange and
dipolar interactions, and taking into account the parti-
cle’s shape, size, and the underlying crystal structure. We
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then apply this theory to investigate the effects of sur-
face anisotropy on the resonance field and linewidth. As
has been done in references [1–3] for the static properties
(hysteresis cycles, energyscape, and magnetic structure),
a relationship is being established on the dynamic level,
and in particular in what concerns the FMR character-
istics, between the many-spin approach and the effective
EOSP approach employed here. This should also help es-
tablish the limit of validity of the EOSP model.
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